116 research outputs found

    On Intercept Probability Minimization under Sparse Random Linear Network Coding

    Get PDF
    This paper considers a network where a node wishes to transmit a source message to a legitimate receiver in the presence of an eavesdropper. The transmitter secures its transmissions employing a sparse implementation of Random Linear Network Coding (RLNC). A tight approximation to the probability of the eavesdropper recovering the source message is provided. The proposed approximation applies to both the cases where transmissions occur without feedback or where the reliability of the feedback channel is impaired by an eavesdropper jamming the feedback channel. An optimization framework for minimizing the intercept probability by optimizing the sparsity of the RLNC is also presented. Results validate the proposed approximation and quantify the gain provided by our optimization over solutions where non-sparse RLNC is used.Comment: To appear on IEEE Transactions on Vehicular Technolog

    Operating ITS-G5 DSRC over Unlicensed Bands: A City-Scale Performance Evaluation

    Get PDF
    Future Connected and Autonomous Vehicles (CAVs) will be equipped with a large set of sensors. The large amount of generated sensor data is expected to be exchanged with other CAVs and the road-side infrastructure. Both in Europe and the US, Dedicated Short Range Communications (DSRC) systems, based on the IEEE 802.11p Physical Layer, are key enabler for the communication among vehicles. Given the expected market penetration of connected vehicles, the licensed band of 75 MHz, dedicated to DSRC communications, is expected to become increasingly congested. In this paper, we investigate the performance of a vehicular communication system, operated over the unlicensed bands 2.4 GHz - 2.5 GHz and 5.725 GHz - 5.875 GHz. Our experimental evaluation was carried out in a testing track in the centre of Bristol, UK and our system is a full-stack ETSI ITS-G5 implementation. Our performance investigation compares key communication metrics (e.g., packet delivery rate, received signal strength indicator) measured by operating our system over the licensed DSRC and the considered unlicensed bands. In particular, when operated over the 2.4 GHz - 2.5 GHz band, our system achieves comparable performance to the case when the DSRC band is used. On the other hand, as soon as the system, is operated over the 5.725 GHz - 5.875 GHz band, the packet delivery rate is 30% smaller compared to the case when the DSRC band is employed. These findings prove that operating our system over unlicensed ISM bands is a viable option. During our experimental evaluation, we recorded all the generated network interactions and the complete data set has been publicly available.Comment: IEEE PIMRC 2019, to appea

    High-Speed Data Dissemination over Device-to-Device Millimeter-Wave Networks for Highway Vehicular Communication

    Get PDF
    Gigabit-per-second connectivity among vehicles is expected to be a key enabling technology for sensor information sharing, in turn, resulting in safer Intelligent Transportation Systems (ITSs). Recently proposed millimeter-wave (mmWave) systems appear to be the only solution capable of meeting the data rate demand imposed by future ITS services. In this poster, we assess the performance of a mmWave device-to-device (D2D) vehicular network by investigating the impact of system and communication parameters on end-users.Comment: To appear in IEEE VNC 2017, Torino, I

    Modeling and Design of Millimeter-Wave Networks for Highway Vehicular Communication

    Get PDF
    Connected and autonomous vehicles will play a pivotal role in future Intelligent Transportation Systems (ITSs) and smart cities, in general. High-speed and low-latency wireless communication links will allow municipalities to warn vehicles against safety hazards, as well as support cloud-driving solutions to drastically reduce traffic jams and air pollution. To achieve these goals, vehicles need to be equipped with a wide range of sensors generating and exchanging high rate data streams. Recently, millimeter wave (mmWave) techniques have been introduced as a means of fulfilling such high data rate requirements. In this paper, we model a highway communication network and characterize its fundamental link budget metrics. In particular, we specifically consider a network where vehicles are served by mmWave Base Stations (BSs) deployed alongside the road. To evaluate our highway network, we develop a new theoretical model that accounts for a typical scenario where heavy vehicles (such as buses and lorries) in slow lanes obstruct Line-of-Sight (LOS) paths of vehicles in fast lanes and, hence, act as blockages. Using tools from stochastic geometry, we derive approximations for the Signal-to-Interference-plus-Noise Ratio (SINR) outage probability, as well as the probability that a user achieves a target communication rate (rate coverage probability). Our analysis provides new design insights for mmWave highway communication networks. In considered highway scenarios, we show that reducing the horizontal beamwidth from 9090^\circ to 3030^\circ determines a minimal reduction in the SINR outage probability (namely, 41024 \cdot 10^{-2} at maximum). Also, unlike bi-dimensional mmWave cellular networks, for small BS densities (namely, one BS every 500500 m) it is still possible to achieve an SINR outage probability smaller than 0.20.2.Comment: Accepted for publication in IEEE Transactions on Vehicular Technology -- Connected Vehicles Serie

    Agile Calibration Process of Full-Stack Simulation Frameworks for V2X Communications

    Get PDF
    Computer simulations and real-world car trials are essential to investigate the performance of Vehicle-to-Everything (V2X) networks. However, simulations are imperfect models of the physical reality and can be trusted only when they indicate agreement with the real-world. On the other hand, trials lack reproducibility and are subject to uncertainties and errors. In this paper, we will illustrate a case study where the interrelationship between trials, simulation, and the reality-of-interest is presented. Results are then compared in a holistic fashion. Our study will describe the procedure followed to macroscopically calibrate a full-stack network simulator to conduct high-fidelity full-stack computer simulations.Comment: To appear in IEEE VNC 2017, Torino, I

    Beam Alignment for Millimetre Wave Links with Motion Prediction of Autonomous Vehicles

    Get PDF
    Intelligent Transportation Systems (ITSs) require ultra-low end-to-end delays and multi-gigabit-per-second data transmission. Millimetre Waves (mmWaves) communications can fulfil these requirements. However, the increased mobility of Connected and Autonomous Vehicles (CAVs), requires frequent beamforming - thus introducing increased overhead. In this paper, a new beamforming algorithm is proposed able to achieve overhead-free beamforming training. Leveraging from the CAVs sensory data, broadcast with Dedicated Short Range Communications (DSRC) beacons, the position and the motion of a CAV can be estimated and beamform accordingly. To minimise the position errors, an analysis of the distinct error components was presented. The network performance is further enhanced by adapting the antenna beamwidth with respect to the position error. Our algorithm outperforms the legacy IEEE 802.11ad approach proving it a viable solution for the future ITS applications and services.Comment: Proc. of IET Colloquium on Antennas, Propagation & RF Technology for Transport and Autonomous Platforms, to appea

    SGA based symbol detection and EM channel estimation for MIMO systems

    Get PDF

    Semi-blind identification of wideband MIMO channels via stochastic sampling

    Get PDF

    Passive Radar for Opportunistic Monitoring in e-Health Applications

    Get PDF
    This paper proposes a passive Doppler radar as a non-contact sensing method to capture human body movements, recognize respiration, and physical activities in e-Health applications. The system uses existing in-home wireless signal as the source to interpret human activity. This paper shows that passive radar is a novel solution for multiple healthcare applications which complements traditional smart home sensor systems. An innovative two-stage signal processing framework is outlined to enable the multi-purpose monitoring function. The first stage is to obtain premier Doppler information by using the high speed passive radar signal processing. The second stage is the functional signal processing including micro Doppler extraction for breathing detection and support vector machine classifier for physical activity recognition. The experimental results show that the proposed system provides adequate performance for both purposes, and prove that non-contact passive Doppler radar is a complementary technology to meet the challenges of future healthcare applications
    corecore